\(\int \frac {(e \sec (c+d x))^{3/2}}{(a+i a \tan (c+d x))^2} \, dx\) [239]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 90 \[ \int \frac {(e \sec (c+d x))^{3/2}}{(a+i a \tan (c+d x))^2} \, dx=\frac {2 e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{5 d \sqrt {e \sec (c+d x)} \left (a^2+i a^2 \tan (c+d x)\right )} \]

[Out]

2/5*e^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d/cos(d*x+c)
^(1/2)/(e*sec(d*x+c))^(1/2)+4/5*I*e^2/d/(e*sec(d*x+c))^(1/2)/(a^2+I*a^2*tan(d*x+c))

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {3581, 3856, 2719} \[ \int \frac {(e \sec (c+d x))^{3/2}}{(a+i a \tan (c+d x))^2} \, dx=\frac {2 e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{5 d \left (a^2+i a^2 \tan (c+d x)\right ) \sqrt {e \sec (c+d x)}} \]

[In]

Int[(e*Sec[c + d*x])^(3/2)/(a + I*a*Tan[c + d*x])^2,x]

[Out]

(2*e^2*EllipticE[(c + d*x)/2, 2])/(5*a^2*d*Sqrt[Cos[c + d*x]]*Sqrt[e*Sec[c + d*x]]) + (((4*I)/5)*e^2)/(d*Sqrt[
e*Sec[c + d*x]]*(a^2 + I*a^2*Tan[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3581

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*d^2*
(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Dist[d^2*((m - 2)/(b^2*(m + 2*n)
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps \begin{align*} \text {integral}& = \frac {4 i e^2}{5 d \sqrt {e \sec (c+d x)} \left (a^2+i a^2 \tan (c+d x)\right )}+\frac {e^2 \int \frac {1}{\sqrt {e \sec (c+d x)}} \, dx}{5 a^2} \\ & = \frac {4 i e^2}{5 d \sqrt {e \sec (c+d x)} \left (a^2+i a^2 \tan (c+d x)\right )}+\frac {e^2 \int \sqrt {\cos (c+d x)} \, dx}{5 a^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}} \\ & = \frac {2 e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{5 d \sqrt {e \sec (c+d x)} \left (a^2+i a^2 \tan (c+d x)\right )} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.82 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.13 \[ \int \frac {(e \sec (c+d x))^{3/2}}{(a+i a \tan (c+d x))^2} \, dx=\frac {i e e^{-3 i (c+d x)} \left (1+e^{2 i (c+d x)}+2 e^{2 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )\right ) \sqrt {e \sec (c+d x)}}{5 a^2 d} \]

[In]

Integrate[(e*Sec[c + d*x])^(3/2)/(a + I*a*Tan[c + d*x])^2,x]

[Out]

((I/5)*e*(1 + E^((2*I)*(c + d*x)) + 2*E^((2*I)*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4
, 1/2, 3/4, -E^((2*I)*(c + d*x))])*Sqrt[e*Sec[c + d*x]])/(a^2*d*E^((3*I)*(c + d*x)))

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 450 vs. \(2 (104 ) = 208\).

Time = 7.07 (sec) , antiderivative size = 451, normalized size of antiderivative = 5.01

method result size
default \(-\frac {2 i \sqrt {e \sec \left (d x +c \right )}\, \left (2 i \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+\left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )-\left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+2 i \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-2 \left (\cos ^{4}\left (d x +c \right )\right )+2 F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-2 \cos \left (d x +c \right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+i \cos \left (d x +c \right ) \sin \left (d x +c \right )-2 \left (\cos ^{3}\left (d x +c \right )\right )+F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-\sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )\right ) e}{5 a^{2} d \left (\cos \left (d x +c \right )+1\right )}\) \(451\)

[In]

int((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-2/5*I/a^2/d*(e*sec(d*x+c))^(1/2)*(2*I*cos(d*x+c)^3*sin(d*x+c)+cos(d*x+c)^2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(csc(d*x+c)-cot(d*x+c)),I)-cos(d*x+c)^2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x
+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(csc(d*x+c)-cot(d*x+c)),I)+2*I*cos(d*x+c)^2*sin(d*x+c)-2*cos(d*x+c)^4+2*
EllipticF(I*(csc(d*x+c)-cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)-2
*cos(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(csc(d*x+c)-cot(d*x+c)),I)+
I*sin(d*x+c)*cos(d*x+c)-2*cos(d*x+c)^3+EllipticF(I*(csc(d*x+c)-cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)-(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(csc(d*x+c)-
cot(d*x+c)),I))*e/(cos(d*x+c)+1)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.20 \[ \int \frac {(e \sec (c+d x))^{3/2}}{(a+i a \tan (c+d x))^2} \, dx=\frac {{\left (2 i \, \sqrt {2} e^{\frac {3}{2}} e^{\left (3 i \, d x + 3 i \, c\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right ) + \sqrt {2} {\left (2 i \, e e^{\left (4 i \, d x + 4 i \, c\right )} + 3 i \, e e^{\left (2 i \, d x + 2 i \, c\right )} + i \, e\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{5 \, a^{2} d} \]

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

1/5*(2*I*sqrt(2)*e^(3/2)*e^(3*I*d*x + 3*I*c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, e^(I*d*x + I*c)
)) + sqrt(2)*(2*I*e*e^(4*I*d*x + 4*I*c) + 3*I*e*e^(2*I*d*x + 2*I*c) + I*e)*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e
^(1/2*I*d*x + 1/2*I*c))*e^(-3*I*d*x - 3*I*c)/(a^2*d)

Sympy [F]

\[ \int \frac {(e \sec (c+d x))^{3/2}}{(a+i a \tan (c+d x))^2} \, dx=- \frac {\int \frac {\left (e \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\tan ^{2}{\left (c + d x \right )} - 2 i \tan {\left (c + d x \right )} - 1}\, dx}{a^{2}} \]

[In]

integrate((e*sec(d*x+c))**(3/2)/(a+I*a*tan(d*x+c))**2,x)

[Out]

-Integral((e*sec(c + d*x))**(3/2)/(tan(c + d*x)**2 - 2*I*tan(c + d*x) - 1), x)/a**2

Maxima [F(-2)]

Exception generated. \[ \int \frac {(e \sec (c+d x))^{3/2}}{(a+i a \tan (c+d x))^2} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

Giac [F]

\[ \int \frac {(e \sec (c+d x))^{3/2}}{(a+i a \tan (c+d x))^2} \, dx=\int { \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {3}{2}}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((e*sec(d*x + c))^(3/2)/(I*a*tan(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{3/2}}{(a+i a \tan (c+d x))^2} \, dx=\int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^2} \,d x \]

[In]

int((e/cos(c + d*x))^(3/2)/(a + a*tan(c + d*x)*1i)^2,x)

[Out]

int((e/cos(c + d*x))^(3/2)/(a + a*tan(c + d*x)*1i)^2, x)